Get Adobe Flash player
Italian Wing :: Focke Wulf A5
Italian Wing Forum Index » BATTLE OF STALINGRAD

Post new topic   Reply to topic   printer-friendly view
Focke Wulf A5
View previous topic :: View next topic  
Author Message
Cipson







Joined: 08 Jan 2013
Posts: 0

Medals: None



PostPosted: Fri Jul 21, 2017 9:26 am    Post subject: Focke Wulf A5 Reply with quote

Il nuovo A5 sembra effettivamente un bell'oggetto con cui contrastare lo strapotere degli Ivan, a patto di usarlo bene ovviamente... forse ha quel poco di più di velocità e rollio, rispetto all'A3, che permette di gestire meglio il combattimento...



Link


...

Posted after 20 minutes 45 seconds:

Comunque anche l'A3 , se usato bene, può essere un arma micidiale...

basta non incorrere nei classici errori ben mostrati nel video...
Non solo adeguato per il Boom and Zoom, permette di lasciare rapidamente la Combat Zone e ripresentarsi in vantaggio, è anche perfetto per il Drag and Bag, con il vostro wingman, a causa della velocità nell'estendere e della capacità di rollio, che permette una lunga difesa... (dal minuto 20 del video)


Link

_________________
"The Italians", are coming!
Back to top
View user's profile Send private message Visit poster's website

Your banner code goes here
Veltro







Joined: 21 Jan 2013
Posts: 0
Location: Italy

Medals: None



PostPosted: Sat Jul 22, 2017 9:41 am    Post subject: Reply with quote

Bisogna aspettare la 2.012 con i nuovi FM, soprattutto per il FW. Comunque addestrarsi su Berloga è cosa buona e giusta, almeno ci si allena al tiro. La 2.012 dovrebbe uscire per la fine di agosto.

Quote:
Common changes:

1. Aircraft stability along the pitch and yaw axes has been reworked. Planes reaction to control surfaces input became much less volatile and closer to reality.
2. Aircraft controllability was tuned simultaneously with the stability in the same control channels. Control surfaces inputs in different flight conditions became more realistic. Aircraft handling became much less 'sharp' and more convenient and predictable.
3. Roll 'dipping' after a full rudder input has been significantly decreased for all aircraft. Flat turns, coordinated side-slipping (straight banked flight with full rudder input for braking) and other maneuvers with side slipping motion at large angles became much closer to real ones.
4. Time of stabilizers and trimmers shift from end to end made more realistic.
5. Trim effectiveness has been corrected for several aircraft to correspond to the updated balance boundaries.
6. Load increase of the control surfaces has been corrected as the speed increases, changing aircraft controllability at various flight speeds and making them function closer to real data.
7. Because of the tuned stability characteristics, aircraft lose directional stability in an event of horizontal surfaces destruction.
8. Because of the tuned stability characteristics, aircraft lose lateral stability in an event of vertical surfaces destruction.
9. Because of the tuned controllability and stability and additional stall tuning, aircraft stall behavior changed. An aircraft sticks less in a spin, spin recovery became easier and more predictable. Therefore, an aircraft behavior during stall and spin became closer to the real thing. If there was a specific spin data available for an aircraft, it was taken into account to make the FM even more accurate (additional details follow below).
10. Thanks to aircraft stability and controllability changes taxiing and take-off and landing runs became more predictable and controllable.
11. Run-down time of the freely rotating landing gear wheels has been decreased by increasing friction values in the wheel bearings.
12. Landing gear brakes friction has been increased, making the aircraft stopping and holding while revving the engine(s) easier.
13. Air flow at beyond-stall AoA is now modeled better, making bobbling and shaking during a stall more realistic.
14. Control surfaces buffeting values at high flight speeds have been tuned: amplitudes were lowered, frequencies increased.
15. Flight stick and pedals shifting speed became slower even more due to increased load at high flight speeds.
16. Oscillation delay time of the sideslip indicator (the small ball) has been corrected.
17. Aircraft fragments behavior (unnaturally smooth fall of detached ailerons, elevators, rudders, etc.) has been corrected, especially at high speeds.

Additional clarification on fixes of Soviet planes:

LaGG-3 series 29:
1. Landing gear physics model has been revised. Now the aircraft is much less prone to 'circling', it is now possible to turn at 15-25 km/h speed without using brakes.
2. Take-off characteristics in crosswinds improved.
3. Pedals load at various flight conditions has been corrected (significantly increased at low speeds and significantly decreased at high speeds).
4. Pitch balance and its dependence on the flaps have been corrected.
5. Rudder, elevator and ailerons trim shift time from end to end increased from 6 to 8 seconds.
6. Elevator trim effectiveness has been decreased.

La-5 series 8:
1. Landing gear physics model has been revised. Now the aircraft is much less prone to 'circling', it is now possible to turn at 15-25 km/h speed without using brakes.
2. Pedals load at various flight conditions has been corrected (increased at low speeds and decreased at high speeds).
3. Pitch balance and its dependence on the flaps have been corrected.
4. Rudder, elevator and ailerons trim shift time from end to end increased from 6 to 8 seconds.
5. The aircraft stall behavior has been corrected using the data available. The stall in a level flight doesn't end in a spin, the aircraft proceeds to 'pancake', keeping the roll controllability. In a case of intentional spin entry, spin recovery requires intensive rudder input while failure to give it can result in a significant spin recovery delay.

I-16 type 24:
1. Pitch balance and its dependence on the landing flap have been corrected.
2. Flight stick load along the roll axis at medium and high flight speeds has been slightly increased.
3. Pedals load at various flight conditions has been corrected (increased at low speeds and decreased at high speeds).
4. Extended landing flap pitches the aircraft up significantly, on the glide path this must be compensated by flight stick movement forward.
5. Stall speed with the landing flap and gear extended is 3-4 km/h lower than with them retracted.
6. The aircraft stall behavior has been checked using the data available. The stall readily results in a spin, spin recovery requires intensive rudder input while failure to give it can result in a significant spin recovery delay.

MiG-3 series 24:
1. Roll rate at various flight conditions has been corrected (decreased at medium and high speeds).
2. Pitch balance and its dependence on the flaps have been corrected.
3. Elevator trim effectiveness has been decreased.
4. Elevator and rudder trim shift time from end to end increased from 6 to 8 seconds.
5. Flight stick load along the roll axis at high flight speeds has been slightly decreased.
6. Pedals load at various flight conditions has been corrected (significantly increased at low speeds and significantly decreased at high speeds).
7. The aircraft stall behavior has been corrected using the data available. The stall in a level flight readily ends in a spin, spin recovery doesn't require much effort.

Yak-1 series 69/127:
1. Pitch balance has been corrected.
2. Flight stick load along the pitch axis has been increased at high flight speeds.
3. Flight stick load along the roll axis has been corrected at any flight speeds.
4. Pedals load at medium and high flight speeds has been increased significantly.
5. Elevator trim shift time from end to end increased from 6 to 8 seconds.
6. Elevator trim effectiveness has been decreased.
7. The neutral roll position of the flight stick that was incorrect for joysticks without FFB has been corrected.
8. The aircraft stall behavior has been checked using the data available. The stall readily results in a spin, spin recovery requires intensive rudder input while failure to give it can result in a significant spin recovery delay.

P-40E-1:
1. Pitch balance and its dependence on the landing flaps has been corrected.
2. Pedals load at various flight conditions has been corrected (slightly increased at low speeds and decreased at high speeds).
3. The landing flaps drag has been decreased.
4. The aircraft stall behavior has been corrected using the data available. The stall in a level flight doesn't end in a spin, the aircraft proceeds to 'pancake'.

IL-2 mod. 1941/42/43:
1. Flight stick and pedals load at any flight speeds have been increased significantly.
2. Elevator trim shift time from end to end increased from 6 to 8 seconds.
3. The number of complete revolutions of the elevator trim handle in the cockpit has been increased.
4. The aircraft stall behavior has been corrected using the data available. The stall in a level flight doesn't end in a spin, the aircraft proceeds to 'pancake'. The stall in a turn ends in a spin.

Pe-2 series 35/87/110:
1. Pitch balance and its dependence on the landing flaps have been corrected.
2. Propellers backwash influence on the aircraft has been decreased.
3. Elevator trim effectiveness has been decreased.
4. Rudder, elevator and ailerons trim shift time from end to end increased from 6 to 8 seconds.
5. Pedals load at various flight conditions has been corrected (increased at low speeds and decreased at high speeds).
6. Flight stick load along the pitch axis has been increased at any flight speeds.
7. Pe-2 series 87 water radiators increase drag correctly as they are opened (previously the left engine radiators didn't increase drag while the right engine radiators affected the drag for both engine nacelles).

Additional clarification on fixes of German planes:

Bf 109 E-7:
1. Pitch balance and its dependence on the horizontal stabilizer and flaps have been corrected.2. Flight stick load at any flight speeds has been corrected (increased at low speeds and decreased at high speeds).
3. Flight stick load along the roll axis at high flight speeds has been increased.
4. Pedals load at medium and high flight speeds has been increased significantly.
5. Horizontal stabilizer shift time from end to end increased from 5 to 15 seconds according to the reference video.
6. Flaps extension time increased from 15 to 20 seconds according to the reference video.
7. The aircraft flight model is corrected to correspond to other aircraft FM (its difference was caused by attempts to fix the roll issues quickly).
8. Pushing the flight stick forward abruptly is less likely to cause an inverted snap roll or reverse spin.
9. The aircraft stall behavior has been corrected using the data available. The stall danger in a turn if an excessive flight stick input has been given is minimal.

Bf 109 F-2/F-4/G-2/G-4:
1. Their roll rate at various flight conditions has been corrected (decreased at medium and high speeds).
2. Pedals load at high flight speeds has been decreased.
3. Pitch balance and its dependence on the horizontal stabilizer and flaps have been corrected.
4. Horizontal stabilizer shift time from end to end increased from 5 to 15 seconds according to the reference video.
5. Flaps extension time increased from 15 to 20 seconds according to the reference video.
6. Flight stick load along the pitch axis has been increased at low and medium flight speeds.
7. Flight stick load along the roll axis at medium and high flight speeds has been increased significantly.
8. Pedals load at low and medium flight speeds has been increased.
9. Pushing the flight stick forward abruptly is less likely to cause an inverted snap roll or reverse spin.
10. The additional research on the aircraft stall has been performed using the data available. It stalls in a turn if an excessive flight stick input has been given. Spin recovery doesn't require much effort.

Fw-190 A3/A4:
1. Pitch balance and its dependence on the horizontal stabilizer and flaps have been corrected.
2. Flight stick load along the roll axis has been slightly corrected at any flight speeds.
3. Pedals load at various flight conditions has been corrected (increased at low speeds and decreased at high speeds).
4. The additional research on the aircraft stall has been performed using the data available. It stalls in a turn if an excessive flight stick input has been given. The stall starts very quickly after pre-stall buffeting.

MC.202 series VIII:
1. Pitch balance and its dependence on the horizontal stabilizer and flaps have been corrected.
2. Flight stick load along the pitch axis has been decreased at high flight speeds.
3. Flight stick load along the roll axis has been corrected at any flight speeds.
4. Pedals load at various flight conditions has been corrected (increased at low speeds and decreased at high speeds).
5. Horizontal stabilizer shift time from end to end increased from 5 to 15 seconds.

Ju 87 D-3:
1. Pitch balance and its dependence on the flaps have been corrected.
2. Flight stick load along the pitch and roll axes and pedals load have been increased at high flight speeds.
3. Rudder and elevator trim shift time from end to end increased from 6 to 8 seconds.
4. Elevator trim effectiveness has been decreased.
5. Propeller backwash influence on the aircraft has been increased (now more rudder input is required during a take-off run).

Bf 110 E-2/G-2:
1. Course stability while taxiing has been improved.
2. Pitch balance and its dependence on the horizontal stabilizer and flaps have been corrected.
3. Propellers backwash influence on the aircraft has been decreased.
4. Pedals load at medium and high flight speeds has been decreased.
5. Flight stick load along the pitch axis at medium and high flight speeds has been increased.
6. Elevator trim effectiveness has been decreased.
7. Rudder and elevator trim shift time from end to end increased from 6 to 8 seconds.
8. Engine nacelles drag correctly increases as they are damaged.
9. The aircraft is much less controllable at high AoA, now it stalls uncontrollably if you attempt extreme maneuvers.
10. The rotation rate in a flat turn is set according to the reference.
11. Aircraft stall in a level flight is much 'softer', without the tendency to enter a spin, as described in the reference article.

He 111 H-6/H-16:
1. Pitch balance and its dependence on the horizontal stabilizer and flaps have been corrected.
2. Flight stick load along the roll axis at high flight speeds has been decreased.
3. Pedals load at various flight conditions has been corrected (increased at low speeds and decreased at high speeds).
4. Flight stick load at various flight conditions has been corrected (increased at low speeds and decreased at high speeds).
5. Elevator, rudder and ailerons effectiveness has been decreased.
6. Rudder and ailerons trim shift time from end to end increased from 6 to 8 seconds.
7. Elevator trim shift time from end to end increased from 7 to 8 seconds.
8. Course stability while taxiing has been improved.
9. An issue with He-111 H6 roll trim after the right aileron loss has been fixed.
10. Water and oil radiators increase drag correctly as they are opened (previously the left engine radiators didn't increase drag while the right engine radiators affected the drag for both engine nacelles).
11. Engine nacelles drag correctly increases as they are damaged.
12. The misalignment of the animated and physical (true) position of the landing gear during its extension and retraction has been removed.

Ju 88 A-4:
1. Pitch balance and its dependence on the flaps have been corrected.
2. Flight stick load along the pitch axis at any flight speeds has been increased.
3. Flight stick load along the roll axis at high flight speeds has been decreased.
4. Pedals load at high flight speeds has been significantly decreased.
5. Elevator trim effectiveness has been decreased.
6. Rudder trim shift time from end to end increased from 6 to 8 seconds.
7. Ailerons trim shift time from end to end increased from 5 to 8 seconds.
8. Engine nacelles drag correctly increases as they are damaged.
9. Bottom turret drag correctly increases as it's damaged.

Ju 52/3mg 4e:
1. Pitch balance and its dependence on the horizontal stabilizer and flaps have been corrected.
2. Flight stick load along the pitch axis at medium and high flight speeds has been slightly increased.
3. Pedals load at medium and high flight speeds has been significantly decreased.
4. Engine nacelles drag correctly increases as they are damaged.

============================



Posted after 4 minutes 54 seconds:

Il FW sarà un altro aereo rispetto alla versione attuale, e così i 109. L'unico aereo che attualmente dovrebbe già avere i nuovi FM è l'overmodelled Spitfire, che sicuramente sarà sistemato nella 2.012, almeno per quel che riguarda il motore.

In teoria, i 109 dovrevvero esse più simili all'attuale E7, e questo dovrebbe facilatare non poco la mira, attualmente resa molto difficile dal "wobbling" (ondeggiamento del muso, e rollio indotto dal timone). PEr il FW, bisogna sperare e pregare che non lo abbiano castrato nuovamente.

Back to top
View user's profile Send private message

Cipson







Joined: 08 Jan 2013
Posts: 0

Medals: None



PostPosted: Sat Jul 22, 2017 3:27 pm    Post subject: Reply with quote

Grazie Veltro per la disamina.... ok
_________________
"The Italians", are coming!
Back to top
View user's profile Send private message Visit poster's website

22GCT_PlaN




Age: 50

Zodiac: Virgo
Chinese zodiac: Cock
Joined: 27 May 2013
Posts: 0

Medals: None



PostPosted: Sun Jul 23, 2017 6:07 pm    Post subject: Reply with quote

Scusate l'ignoranza ma cosa si intende per "pedals load" "Flight stick load"?
Back to top
View user's profile Send private message

Veltro







Joined: 21 Jan 2013
Posts: 0
Location: Italy

Medals: None



PostPosted: Mon Jul 24, 2017 6:41 am    Post subject: Reply with quote

Io l'ho capita così.
Il carico aerodinamico esercitato sul timone e sui controlli dell'aereo in genere, e quindi la forza che devi esercitare sui pedali e la barra di comando. In sostanza, ad es., i 109 saranno più "rigidi" alle medie e alte velocità di quanto non lo siano ora.

Back to top
View user's profile Send private message

Display posts from previous:   
Post new topic   Reply to topic   printer-friendly view    Italian Wing Forum Index » BATTLE OF STALINGRAD All times are GMT + 1 Hour
Page 1 of 1
 

Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum
You cannot attach files in this forum
You cannot download files in this forum

Powered by phpBB © 2001, 2002 phpBB Group
Adapted for RUNCMS by SVL © 2005 module info -
iCGstation v1.0 Template By Ray © 2003, 2004 - Adapted for Runcms By Poppy_64 iOptional




Board Security

8910 Attacks blocked